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Abstract 

Graphs of unbranched hexagonal systems consist of hexagonal rings connected with 
each other. Molecular graphs of unbranched polycyclic aromatic hydrocarbons serve as 
an example of graphs of this class. The Wiener index (or the Wiener number) of a graph 
is defined as the sum of distances between all pairs of its vertices. Necessary conditions 
for the existence of graphs with different numbers of hexagonal rings and equal values 
of the Wiener index are formulated, and examples of such graphs are presented. 

1. In t roduct ion 

One of the promising trends of mathematical chemistry is the construction and 
investigation of molecular graph invariants which could be used to describe structures 
of chemical compounds. Such invariants, called topological indices, are used to 
reveal molecular similarity, order isomers, and compare molecular skeleton forms, 
characterize molecular branching and cycling, establish the relationship between 
structure and properties of molecules, predict biological activity of chemical compounds, 
etc. [1-5]. Among a great number of papers on topological indices, two trends are 
discernible. The papers of the first trend are dedicated to the construction and application 
of topological indices to particular problems of chemistry. The papers of the second 
trend deal with the properties of topological indices as mathematical objects. There 
is a close relationship between the above trends as, on the one hand, a profound 
mathematical investigation covers the indices which have already shown their advantages 
in chemical applications and, on the other hand, the mathematical analysis of the 
index properties provides additional information to a scientist by revealing the features 
of the indices' behaviour and possible restrictions, thus allowing the use of the 
indices with a greater comprehension. 

The most important characteristic of any topological index is its sensitivity in 
the process of molecular structure classification. If topological index values coincide 
for two different molecular graphs, i.e. the index degenerates on these structures, 
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then it is less sensitive than the index which differentiates these graphs. In problems 
of compound property prediction, the assumption is often used that molecules with 
similar structures (or values of the index as a measure of similarity) have similar 
properties. Thus, the discriminating ability of the index and the structure of graphs 
where the index degenerates are important for the investigation of topological indices. 

The Wiener index (or the Wiener number), which is equal to the sum of 
distances between all pairs of molecular graph vertices, is one of the most well- 
known topological indices. For this index and its modifications, the relationship is 
established between its values and properties of chemical compounds, in particular, 
polycyclic aromatic structures [6-11 ]. 

2. Basic definitions 

We consider finite connected graphs without loops and multiple edges; V(G) 
is a set of vertices of the graph G and IV(G) [ is the order of the graph. Define a class 
of graphs where all internal faces on a plane are hexagonal, and two arbitrary faces 
either have only a common edge (i.e. they are adjacent), or have no common vertices. 
Each face is adjacent to no more than two other faces. Hexagonal faces together with 
their bound are called the tings of the graph. By placing each hexagonal ring in 
correspondence with a new vertex and then joining them (if the corresponding rings 
are adjacent), we obtain the characteristic graph of the initial one. A set of graphs 
consisting of h tings for which their characteristic graph is isomorphic to a simple 
path is denoted by Gh. Graphs G 1, G 2 and G 3 (see fig. 1) belong to the class Gh. 

G I G2 

Fig. 1. 

G 3 

Graphs of this class model molecular structures of unbranched cata-condensed benzenoid 
hydrocarbons [12]. The order of any graph from Gh is obviously equal to 4h + 2, and 
all vertices of the graph have degree 2 or 3. By the distance d(u, v) between vertices 
v, u E V(G) we mean the length of a simple path which joins the vertices v and u 
in the graph G and contains the minimal number of edges. The Wiener index of the 
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1 ~-,v vcc~d(v, u). The set of  graphs Gh can be graph G is determined as W(G)=~ ,ue 
divided into two disjoint subsets Gh = Lh U Nh, where the set L h is composed of the 
graphs which are embedded into a regular hexagonal lattice on a plane (see graph 
G 1 in fig. 1), while graphs of the class Nh cannot be embedded into a hexagonal 
lattice (graphs G 2 and G 3 in fig. 1). 

. Proper t ies  of the unb ranched  hexagonal system graphs  with equal Wiener  
index 

In this section, we formulate the necessary conditions for the existence of  
graphs with equal values of  the Wiener index and different numbers of  rings. To 
continue, we need certain results from the theory of  the Wiener index of  hexagonal 
system graphs. 

STATEMENT 1 [13-15] 

(a) The Wiener index of  the unbranched hexagonal system graphs is an odd 
number; 

(b) the Wiener index of an arbitrary graph G ~ Gh is within the range 

Wmin(h ) _< W(G) < Wmax(h ), 

where  Wmin(h ) = 1(8h3 + 72h 2 - 26h + 27) and Wmax(h ) = ½(16h 3 + 36h 2 
+ 26h + 3), and equality is reached on graphs presented in fig. 2; 

Wmin Wmax 

Fig. 2. 

(c) W(G 0 - W(G2)  (mod 8) holds for the Wiener index value of  two arbitrary 
graphs of hexagonal systems G 1, G 2 ~ Gh. 

Define a set of  possible values of the Wiener index for graphs of  the class 
Gh as E h = {Wmin(h ) + 8nln = 0, 1 . . . . .  ~(Wmax(h) -- Wmin(h))}. The set E h is a discrete 
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interval of  odd numbers of cardinality IEhl -= 1 ~ - ( W m a  x - Wmin) + 1 = h(2h 2 -  9h + 13). 
Denote the set of  the Wiener index values of  all graphs of the class Gh as W(Gh), 
i.e. W(Gh) = {W(G)IG e Gh}. The number C(h) of graphs of the unbranched hexagonal 
systems with h rings is obtained as follows [16]: 

41--(3(h-2)/2+ 1) 2 for h = 2 ,4 ,6  . . . . .  

C(h) = l (3h -2+3(h -1 )12+3(h -3 )12+  1) for h = 3 ,5 ,7  . . . . .  

As the number of rings increases, the number of graphs of  the class Gh 
increases in proportion to 3 h, while the number of possible values of  the Wiener 
index increases only as h 3. Hence, the average cardinality of the index degeneration 
class (graphs with the same values of index) increases exponentially for each value 
of  the index. Thus, the problem is naturally stated as the investigation of  the Wiener 
index degeneration for graphs of Gh, where the value of h is fixed. Such an investigation 
was pursued in [17-24],  and the last paper presents complete information on the 
index degeneration classes in Gh for graphs with the number of rings 3 _< h _< 16. 
The results of  theoretical studies [17-19] and, particularly, [18,19], however, make 
it possible to construct large graphs with the same number of tings and equal values 
of the Wiener index quite easily. We consider the existence of  graphs with a 
different number of rings and equal values of the Wiener index. In the present 
paper, the question "Are there graphs G 1 e Gh~ and G 2 6 qh2, h I :¢ h2, such that 
W(G 1) = W(G2)?" is answered in the affirmative. 

The obviously necessary condition for the existence of graphs with a different 
number of  rings and equal values of the Wiener index is a non-empty intersection 

Eh I ,,~" , Eh2 
I ""' I 

! ! 
! ! 

,11 I ,,, i "lm 

Wmin(h 2 ) "Ehl ~ Eh2 Wmax(hl ) 

Fig. 3. 

of  the sets of  the possible index values for graphs from classes Gh~ and Gh2, i.e. 
Ehl ('3 Eh2 ~ Q~ (see fig. 3). The condition for selecting the sets Eh~ and Eh2 establishes: 

STATEMENT 2 

If for graphs G1 e Gh~ and G 2 e Gh2, hi ¢ h2, the values of the Wiener index 
coincide, W(G1) = W(G2) ,  then hi - h2 (rood 4) holds for the number of  rings of the 
graphs. 
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Proof 

Let h 1 < h 2 and h 2 = h 1 + k. By virtue of the equality W(G1) = W(G 2) and 
the structure of  the sets  Ehl and Eh2, values Wmin(h2) and Wmin(h 2 -  k) are to be 
compatible by modulus 8. We have Wmin(h2) - Wmin(h 2 -  k) = 8k(h2- k) (h2 + 6) 
+ 2k(4k2 + 36k - 1). The first term in the expression obtained is divisible by 8, and 
the value 4k 2 + 3 6 k -  1 is odd for any k. Therefore, the second term is divisible by 
8, if and only i f k = 4 m ,  m = 1 , 2 , 3  . . . . .  [] 

According to statement 2, graphs with equal values of  the Wiener index 
cannot have a number of  hexagonal rings which differs arbitrarily, i.e. such graphs 
should be sought for in the classes . . .  Gh-8, Gh-4, Gh, Gh +4, Gh + 8 . . . .  only. 
First consider the two nearest classes Gh- 4 and Gh. The condition of the non-empty 
intersection of the sets Eh_ 4 and Eh gives: 

STATEMENT 3 

If h > 27 holds for the number of rings in graphs from Gh- 4 and Gh, then the 
set Eh_4 ~ Eh is non-empty. 

Proof 

The condition Eh_ 4 (~E h ;e 0 is equivalent to the inequality Wmax(h-4) 
- Wmin(h) > 0 being satisfied (see fig. 3). For the Wiener index difference, we have 
Wmax(h - 4) - Wmin(h ) = 1 (8h 3 _ 246h 2 + 532h - 576). The expression obtained takes 
on negative values for 3 < h < 26, and positive values for h > 27. [] 

The information on the number of graphs in classes Gh- 4 and Gh, the cardinality 
of  the sets of  the Wiener index values and their intersection is given in table 1 for 
certain values of h. 

Since the Wiener index depends considerably on the number of  vertices in 
graphs, so the number of  rings in a graph from Gh is compensated for by shorter 
distances between its vertices than in a graph from the class Gh-4. Thus, a graph 
from Gh is expected to be "similar" to a graph with the minimal value of  the Wiener 
index in Gh, while a graph from Gh-4 is expected to be "similar" to a graph with 
the maximal value of the Wiener index in Gh-4. If the cardinality of  the set 
Eh_ 4 (3 E h is low,  then there will be no graphs with the Wiener index values 
belonging to Eh_ 4 U'~ E h. AS is shown in [24], the set Eh\W(Gh) is non-empty for 
any h > 3. It can be presented as Eh\ W(Gh) = ui [ai, bi], where [a i, bi] are discrete 
intervals of  values, some of which have cardinality proportional to h. The intervals 
are located in the starting and final parts of  Eh, their cardinality decreasing from 
the bounds to the centre of  E h. Therefore, if the set Eh_ 4 n Eh is not sufficiently 
large, then it can be included in the set (Eh _ 4 \ W ( G h  _ 4)) k.) (Eh \ W(Gh)); there exist 
no graphs which realize the elements of the latter. Pairs of  graphs from classes G25 
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Table 1 

Numbers of graphs in classes .Gh-4 and Cyh, the cardinality of the sets of Wiener index values and their 
intersection for several values of h. 

h - 4  h IGh-41 Iqhl IEh_41 I E h l  IEh_4nEhl 

23 27 2615147350 212822683802 3312 5526 211 
24 28 7845353476 635467254244 3796 6202 467 
25 29 23535971854 1906400965570 4325 6931 760 
26 30 70607649841 5719200505225 4901 7715 1092 
27 31 211822683802 17157599124190 5526 8556 1465 
28 32 635467254244 51472790198116 6202 9456 1881 
29 33 1906400965570 154418363419894 6931 10417 2342 
30 34 5719200505225 463255068736321 7715 11441 2850 
31 35 17157599124190 1389765184685602 8556 12530 3407 

and G29 with equal values of the Wiener index are presented in fig. 4. For graphs 
G1 and G2, the index is W(G1) = W(G2) = 89059, and W(G3) = W(G4) = 88035 holds 
for graphs G3 and G 4. For the intersection cardinality ]E25 ~ E29 ] = 760, the value 
W(G~) is the 51 lth value with respect to the left-hand side bound of the interval 
E29, and the 250th value with respect to the right-hand side bound of E25, while 
W(G3) is the 383rd value with respect to the left-hand side bound of E29 and the 
378th value with respect to the right-hand side bound of E25, i.e. W(G3) is almost 
in the centre of the interval E25 0 E29. 

The above considerations deal with the whole set of graphs of the unbranched 
hexagonal systems Gh = Lh u Nh. Extend similar reasoning individually to classes 
of graphs that can be embedded into a regular hexagonal lattice on a plane and those 
for which the embedding is not possible. Let us make use of the expression for 
extreme values of the Wiener index of graphs belonging to the above-mentioned 
classes. 

STATEMENT 4 [2411 

(a) The minimal value of the Wiener index for graphs from the class Lh is 

Wmm(h) = ~-(32h 3 + 168h 2 + qg(h)), 

where 

I - 6 h  + 81, 

q~(h) = - 6 h  + 49, 

- 5 4 h  + 81, 

for h = 3m, 

f o r h = 3 m + l ,  

for h = 3 m + 2 ,  

m = 1,2,3 . . . . .  

m = 0 , 1 , 2  . . . . .  

m = 0 , 1 , 2  . . . . .  
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G 3 

G 4 

? 

Fig. 4. 
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(b) 

where 

The maximal value of the Wiener index for graphs from the class Nh  is 

Wmax(h ) = 9(16h 3 + 36h 2 - 358h + 1587)+ ~o(h), 

8, f o r h  = 8, 

~o(h)= 0, otherwise. 

Graphs for which the above values are reached are presented in fig. 5. The 
analysis of  the intersections of the possible Wiener index values for 2,h and Nh  
allows us to estimate the number of tings in graphs with equal values of  the index. 

Wmin Wmax 

Fig. 5. 

STATEMENT 5 

If for graphs from the class Nh the number of tings is h > 28, and h > 38 
holds for the number of  tings of  graphs from the class £h, then E h_ 4 ~ Eh ~ 9 .  

The information on cardinalities of the Wiener index value intervals and their 
intersections for Nh and Lh is given in table 2. Let graphs G1, G3, G5 E G40 be 
obtained from the graph H E G29 and the corresponding graphs with 1 1 tings as 
illustrated in fig. 6. Consider graphs G2, G4, G6 E G36 which are constructed analogously 
from the graph H1 e ~21 and the corresponding pairs of  graphs with 7 and 8 tings 
(see fig. 6). We have G 1 e L40, G2 e 2-,36 and W(G1) = W(G2) = 262057, G3 E/240, 
G4 ¢ 9~36 and W(G3) = W(G4) = 259033, and G5 ~ N40, G6 E 9~36 and W(G5) = W(G6) 
= 258473. 
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Table 2 

Data for the classes 9~ and Lb. 

Class h - 4  h IEh-41 I E h l  IEh-4nEhl 

a~ 

24 28 3478 5820 149 

25 29 3991 6533 426 

26 30 4551 7301 742 

27 31 5160 8126 1099 

28 32 5820 9010 1499 

29 33 6533 9955 1944 

30 34 7301 10963 2436 

31 35 8126 12036 2977 

32 36 9010 13176 3569 

34 38 7811 11059 244 

35 39 8570 11960 549 

36 40 9330 12936 913 

37 41 10159 13989 1338 

38 42 11059 15043 1748 

39 43 11960 16178 2223 

40 44 12936 17396 2765 

41 45 13989 18615 3292 

42 46 15043 19921 3890 

Thus, we have considered the necessary conditions for the existence of  
graphs with equal values of the Wiener index which belong to the nearest classes 
Gh-4 and Gh. Now we obtain conditions for the existence of a pair of  graphs in 
classes Gh~ and Gh2 for  arbitrary numbers hi and h2, hi < h2 and hi = h2 (rood 4). 

a 

Denote h2 by h for convenience, and let k = a - (h-  hi). Then, the determination of 
the non-emptiness of  the set E h -41~ ~ Eh evidently reduces to the question whether 

= 4  the inequality Wma×(h - 4k) - Wmin(h) ~- [2h 3 - 3h2(16k + 3) + h(192k 2 - 72k + 13) 
- 2k(128k 2 - 2k + 13) - 6] > 0 holds. If we equate this expression to zero, then for 
any k -- 1 the equation obtained (as a cubic polynomial in h) will have only one real 
root for h > 0. For graphs of  the classes Lh and Nh, it is necessary to take the 
corresponding values of  maximal and minimal values of  the Wiener index (for Lh, 
we took ~o(h) = - 5 4 h  + 81). As a result, the number of  rings h in graphs can be 
estimated through k which characterizes the difference in the number of  rings for 
a pair of  graphs. 
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G I 

H 1 

° ° ~ ,,4.,,.. 

G 4 

G 6 

Fig. 6. 
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Table 3 

Data for classes ~h, 9(..h and Lh, for k = 2 and k = 3. 

Class k h -4k  h [Eh_4k I IEhl  IEh_nknEhl 

q~ 

Nh 

38 46 16207 29371 45 

39 47 17576 31396 686 

40 48 19020 33512 1386 

41 49 20541 35721 2147 

42 50 22141 38025 2971 

43 51 83822 40426 3860 

44 52 25586 42926 4816 

45 53 27435 45527 5841 

46 54 29371 48231 6937 

54 66 48231 89441 580 

55 67 51040 93666 1865 

56 68 53956 98022 3233 

57 69 56981 102511 4686 

58 70 60117 107135 6226 

59 71 63366 111896 7855 

60 72 66730 116796 9575 

61 73 70211 121837 11388 

62 74 73811 127021 13296 

39 47 17018 30710 128 

40 48 18446 32810 812 

41 49 19951 35003 1557 

42 50 21535 37291 2365 

43 51 23200 39676 3238 

44 52 24948 42160 4178 

45 53 26781 44745 5187 

46 54 28701 47433 6267 

47 55 30710 50226 7420 

55 67 50226 92660 1051 

56 68 53126 97000 2403 

57 69 56135 101473 3840 

58 70 59255 106081 5364 

59 71 62448 110826 6977 

60 72 65836 115710 8681 

61 73 69301 120735 10478 

62 74 72885 125903 12370 

63 75 76590 131216 14359 

. . .  continued 
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Table 3 (continued) 

Class k h-4k h IEh_~l IEhl IEh_4kC~Ehl 

62 70 49871 72221 847 
63 71 52332 75464 1938 

64 72 54916 78708 2998 

65 73 57625 82093 4167 

66 74 60335 85621 5447 
67 75 63174 89150 6696 

68 76 66144 92826 8060 

69 77 69115 96651 9541 

70 78 72221 100477 10991 

89 101 150221 220639 318 

90 102 155355 227273 2332 

91 103 160666 234108 4499 

92 104 166156 241146 6821 

93 105 171647 248185 9096 

94 106 177321 255431 11530 

95 107 183180 262886 14125 

96 108 189040 270342 16673 

97 109 195089 278011 19386 

STATEMENT 6 

If the number of rings in graphs from classes Gh and 9~, satisfies the inequality 
h > (k + 1)n(k), and h > (k + 1)nl(k) holds for the number of rings in graphs from 
the class £h, then Eh_4k ~ Eh ;e Q, where 

f 
14, k =  1, 

16, k = 2 ,  

n(k)= 17, k = 3 ,  
18, 4 < k < 7 ,  and n l ( k ) =  

19, 8 < k < 2 8 ,  

20, k >_ 29, 

19, k = l ,  

24, k = 2 ,  

26, k = 3 ,  

27, k = 4 ,  

28, k = 5,6, 

29, k =  7,8,  

30, 9_<k<  14, 

31, 1 5 < k < 3 8 ,  

32, k > 39. 

The minimal values of the number of rings in the inequalities from statement 
6 exceed the minimal number of rings possible for graphs with such a property. The 
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exact values of h for k = 2 (in a pair of  graphs for which the number of tings differ 
by 8) and for k = 3 (the difference is 12) are given in table 3. 

Consider necessary conditions for the existence of graphs with equal values 
of the Wiener index and several classes of graphs of the unbranched hexagonal 
systems with a different number of tings. Suppose there is a family of  graphs 
Gi ~ Ghi, i = 1, 2 . . . . .  m, where hi < h2 < • • • < hrn and hi = hj (mod 4) for all 
i , j  = 1, 2 . . . . .  m. The Wiener index will be the same in graphs W(GI) = W(Gj), 

171 i , j  = 1, 2 . . . . .  m if the condition ~ i =  1Ehi ~ Q~ is satisfied. It is easy to see that the 
equality n~= 1Ehi = Ehl ~ Ehm holds, i.e. the problem reduces to the case which has 
already been discussed, namely, the one where the index is the same for a pair of  
graphs. As the functions Wmin(h ) and Wmax(h) increase monotonously with the 
increase of the number of rings h, h > 1, so Wmin(hl) < W(G) <- Wmax(hj) for any 
values hi < hj < hi < hm, i , j  = 1, 2 . . . . .  m, if the inequality Wmin(hm) <- W ( G )  < Wmax(h 1) 
holds. The number of rings of graphs with equal values of  the Wiener index is given 
in table 3 for k = 2 (the case where the Wiener index is the same for three graphs) 
and for k = 3 (the index is the same for four graphs). 

4. Conclusions 

We consider simple necessary conditions for the existence of graphs of the 
unbranched hexagonal systems with a different number of  tings and equal values 
of the Wiener index. We considered also the graphs which are embedded into a 
regular hexagonal lattice on a plane and the graphs for which the embedding is not 
possible. Examples of  such graphs with the number of tings equal to 25 and 29, 36 
and 40 are given. To obtain the graphs, we used the algorithms of fast generation 
of graphs of the unbranched hexagonal systems and those of the Wiener index 
calculation [25]. 
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